This page titled 11.15: Redox Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn. 5: Introduction to Solutions and Aqueous Reactions, { "5.01:_Molecular_Gastronomy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.02:_Solution_Concentration_and_Solution_Stoichiomentry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.03:_Solution_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.04:_Types_of_Aqueous_Solutions_and_Solubility" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.05:_Precipitation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.06:_Representing_Aqueous_Reactions-_Molecular_Ionic_and_Complete_Ionic_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.07:_Acid-Base_and_Gas-Evolution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.08:_Gas_Evolution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.09:_Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Matter_Measurement_and_Problem_Solving" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Atoms_and_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Molecules_Compounds_and_Chemical_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Chemical_Reactions_and_Quantities" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Introduction_to_Solutions_and_Aqueous_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_The_Quantum-Mechanical_Model_of_the_Atom" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Thermochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Periodic_Properties_of_the_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Chemical_Bonding_I-_Lewis_Structures" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chemical_Bonding_II-_Valance_Bond_Theory_and_Molecular_Orbital_Theory" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Liquids_Solids_and_Intermolecular_Forces" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Solids_and_Modern_Materials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Chemical_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Aqueous_Ionic_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Gibbs_Energy_and_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Radioactivity_and_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Organic_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Biochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Chemistry_of_the_Nonmetals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Metals_and_Metallurgy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Transition_Metals_and_Coordination_Compounds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:yes", "license:ccbyncsa", "transcluded:yes", "source-chem-37988", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FCourses%2Fcan%2Fgeneral%2F05%253A_Introduction_to_Solutions_and_Aqueous_Reactions%2F5.05%253A_Precipitation_Reactions, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{1}\): Balancing Precipitation Equations, Exercise \(\PageIndex{1}\): Mixing Silver Fluoride with Sodium Phosphate, 5.4: Types of Aqueous Solutions and Solubility, 5.6: Representing Aqueous Reactions- Molecular, Ionic, and Complete Ionic Equations, Determining the Products for Precipitation Reactions, YouTube(opens in new window), Predicting the Solubility of Ionic Compounds, YouTube(opens in new window), most salts that contain an alkali metal (Li, most salts of anions derived from monocarboxylic acids (e.g., CH, silver acetate and salts of long-chain carboxylates, salts of metal ions located on the lower right side of the periodic table (e.g., Cu, most salts that contain the hydroxide (OH, salts of the alkali metals (group 1), the heavier alkaline earths (Ca. The net ionic equation is as follows: \(Pb^{2+} (aq) + 2I^-(aq) \rightarrow PbI_2(s) \), \(Fe^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(s)\), \(2PO_4^{3-}(aq) + 3Hg^{2+}(aq) \rightarrow Hg_3(PO_4)_2(s)\), \(Ca^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CaCO_3(s)\), Predicting the Solubility of Ionic Compounds: Predicting the Solubility of Ionic Compounds, YouTube(opens in new window) [youtu.be] (opens in new window). In Equation \(\ref{4.2.3}\), the charge on the left side is 2(+1) + 1(2) = 0, which is the same as the charge of a neutral \(\ce{Ag2Cr2O7}\) formula unit on the right side. While full chemical equations show the identities of the reactants and the products and give the stoichiometries of the reactions, they are less effective at describing what is actually occurring in solution. Both electrodes are immersed in a silver nitrate solution. c. What is the standard cell potential for this reaction? The overall reaction is: Mg+ 2H + Mg2 + + H 2, which is represented in cell notation as: Mg(s)Mg2 + (aq)H + (aq)H 2(g)Pt(s). Use substitution, Gaussian elimination, or a calculator to solve for each variable. One half-cell, normally depicted on the left side in a figure, contains the anode. What mass of SO2 can be made from 25.0 g of Na2SO3 and 22.0 g of HCl? The second half-equation shows that each NO3 ion has not only accepted an electron, but it has also accepted two protons. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. a. The anode is connected to a voltmeter with a wire and the other terminal of the voltmeter is connected to a silver electrode by a wire. For our purposes, however, we will assume that precipitation of an insoluble salt is complete. Table \(\PageIndex{1}\) shows that LiCl is soluble in water (rules 1 and 4), but BaSO4 is not soluble in water (rule 5). White light and white solid formed. \[\ce{5Fe^2+}(aq)+\ce{MnO4-}(aq)+\ce{8H+}(aq)\ce{5Fe^3+}(aq)+\ce{Mn^2+}(aq)+\ce{4H2O}(l) \nonumber \], By inspection, Fe2+ undergoes oxidation when one electron is lost to form Fe3+, and MnO4 is reduced as it gains five electrons to form Mn2+. The cell notation for the galvanic cell in Figure \(\PageIndex{2}\) is then, \[\ce{Cu}(s)\ce{Cu^2+}(aq,\: 1\:M)\ce{Ag+}(aq,\: 1\:M)\ce{Ag}(s) \nonumber \]. In the sections that follow, we discuss three of the most important kinds of reactions that occur in aqueous solutions: precipitation reactions (also known as exchange reactions), acidbase reactions, and oxidationreduction reactions. Not oxidized by air under ordinary conditions. A 21.5 g sample of nickel was treated with excess silver nitrate solution to produce silver metal and nickel (II) nitrate. Legal. : Magnesium (Mg) Reacts readily with strong heating. Do Eric benet and Lisa bonet have a child together? The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. Precipitate: black. You can verify that these are correct by summing them to obtain Equation \(\ref{7}\). So far, we have always indicated whether a reaction will occur when solutions are mixed and, if so, what products will form. No reaction occurs 2 Na+ (aq) + 2NO, (aq) - Na(NO3)2(8) Ni?+ (aq) + 2OH(aq) NI(OH)2(8) Ni2+ (aq) + OH(aq) NiOH(s) 2 Na*(aq) + 2OH(aq) + Ni2+ (aq) + 2NO3(aq) +2Na+(aq) + 2NO3- (aq) + Ni(OH)2(8) Na + (aq) + NO, "(aq) NaNO3(s) 2) Select the net ionic equation for the reaction that . A vertical line, , denotes a phase boundary and a double line, , the salt bridge. Determining the Products for Precipitation Reactions: Determining the Products for Precipitation Reactions, YouTube(opens in new window) [youtu.be]. Because two \(\ce{NH4^{+}(aq)}\) and two \(\ce{F^{} (aq)}\) ions appear on both sides of Equation \(\ref{4.2.5}\), they are spectator ions. Copper metal and 0.1 M silver nitrate Part D: Exchange Reactions Use 1 mL of each solution unless otherwise specified. B According to Table \(\PageIndex{1}\), both AlBr3 (rule 4) and Sr(NO3)2 (rule 2) are soluble. The reaction may be summarized as, \[\begin{align} nitrate The cell notation (sometimes called a cell diagram) provides information about the various species involved in the reaction. The reaction was stopped before all the nickel reacted, and 39.5 g of solid metal (nickel and silver) is present. nitric oxide). Solid sodium fluoride is added to an aqueous solution of ammonium formate. Magnesium undergoes oxidation at the anode on the left in the figure and hydrogen ions undergo reduction at the cathode on the right. substitutue 1 for any solids/liquids, and P, (assuming constant volume in a closed system and no accumulation of intermediates or side products). Expert Answer Molar mass of Ni = 58.7 gm/mole Mole of Ni = given mass / Molar mass = 21.5 gm / 58.7 gm/mole = Reaction Ni (s) 2 AgNO3 (aq) ==> View the full answer Did Billy Graham speak to Marilyn Monroe about Jesus? Students tend to think that this means they are supposed to just know what will happen when two substances are mixed. Platinum or gold generally make good inert electrodes because they are chemically unreactive. The reaction may be described by the net ionic Equation If we look at net ionic equations, it becomes apparent that many different combinations of reactants can result in the same net chemical reaction. For example, if 500 mL of a 1.0 M aqueous NaCl solution is mixed with 500 mL of a 1.0 M aqueous KBr solution, the final solution has a volume of 1.00 L and contains 0.50 M Na+(aq), 0.50 M Cl(aq), 0.50 M K+(aq), and 0.50 M Br(aq). b. These added cations replace the silver ions that are removed from the solution as they were reduced to silver metal, keeping the beaker on the right electrically neutral. Inert electrodes are often made from platinum or gold, which are unchanged by many chemical reactions. 2 Na ( s) + 2 H 2 O ( l) 2 NaOH ( a q) + H 2 ( g) Figure 11.7. The salt bridge is represented by a double line, . &\underline{\textrm{reduction: }\ce{MnO4-}(aq)+\ce{8H+}(aq)+\ce{5e-}\ce{Mn^2+}(aq)+\ce{4H2O}(l)}\\ Calculate the mass of solid silver metal present. In addition to precipitation and acid-base reactions, a third important class called oxidation-reduction reactions is often encountered in aqueous solutions. Legal. You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Examples: Fe, Au, Co, Br, C, O, N, F. Ionic charges are not yet supported and will be ignored. The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. When these solutions are mixed, the only effect is to dilute each solution with the other (Figure \(\PageIndex{1}\)). Just as important as predicting the product of a reaction is knowing when a chemical reaction will not occur. Follow 2 The balanced equation will appear above. The overall balanced chemical equation for the reaction shows each reactant and product as undissociated, electrically neutral compounds: \[\ce{2AgNO_3(aq)} + \ce{K_2Cr_2O_7(aq)} \rightarrow \ce{Ag_2Cr_2O_7(s) }+ \ce{2KNO_3(aq)} \label{4.2.1a} \]. d. Is the reaction spontaneous as written? a. Accessibility StatementFor more information contact us atinfo@libretexts.org. 15. By investigating a series of displacement reactions leaners aged 11-14 can learn about the reactivity series of metals. 2AgNO3(aq) + NiCl2(aq) ==> Ni(NO3)2(aq) + 2AgCl(s) Molecular Hence Co(OH)2 will precipitate according to the following net ionic equation: \(Co^{2+}(aq) + 2OH^-(aq) \rightarrow Co(OH)_2(s)\). When the electrochemical cell is constructed in this fashion, a positive cell potential indicates a spontaneous reaction and that the electrons are flowing from the left to the right. A zinc sulfate solution is floated on top of the copper sulfate solution; then a zinc electrode is placed in the zinc sulfate solution. &\textrm{overall: }\ce{5Fe^2+}(aq)+\ce{MnO4-}(aq)+\ce{8H+}(aq)\ce{5Fe^3+}(aq)+\ce{Mn^2+}(aq)+\ce{4H2O}(l) An aqueous solution of strontium hydroxide is added to an aqueous solution of iron(II) chloride. The reducing agent, because it loses electrons, is said to be oxidized. For example, C6H5C2H5 + O2 = C6H5OH + CO2 + H2O will not be balanced, but XC2H5 + O2 = XOH + CO2 + H2O will. Silver Nitrate is a salt, which is colorless or of a white crystalline form. You can use parenthesis () or brackets []. Galvanic or voltaic cells involve spontaneous electrochemical reactions in which the half-reactions are separated (Figure \(\PageIndex{2}\)) so that current can flow through an external wire. What mass of nickel(II) nitrate would be produced given the quantities above? Characteristic Reactions of Select Metal Ions, { "Antimony,_Sb3" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Aluminum_Ions_(Al\u00b3\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Ammonium_Ion_(NH\u2084\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Arsenic_Ions_(As\u00b3\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Barium_(Ba\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Bismuth__(Bi\u00b3\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Cadmium_Ions_(Cd\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Calcium_Ions_(Ca\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Chromium_Ions_(Cr\u00b3\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Cobalt_Ions_(Co\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Copper_Ions_(Cu\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Iron__(Fe\u00b3\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Lead_Ions_(Pb\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Magnesium_Ions_(Mg\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Manganese_Ions_(Mn\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Mercury_Ions_(Hg\u00b2\u207a_and_Hg\u2082\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Nickel_Ions_(Ni\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Silver_Ions_(Ag\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Strontium_Ions_(Sr\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Tin_Ions_(Sn\u00b2\u207a,_Sn\u2074\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Characteristic_Reactions_of_Zinc_Ions_(Zn\u00b2\u207a)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { Characteristic_Reactions_of_Select_Metal_Ions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Confirmatory_Tests : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Properties_of_Select_Nonmetal_Ions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Semimicro_Analytical_Techniques : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Separations_with_Thioacetamide : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, Characteristic Reactions of Nickel Ions (Ni), [ "article:topic", "authorname:jbirk", "Nickel", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FAnalytical_Chemistry%2FSupplemental_Modules_(Analytical_Chemistry)%2FQualitative_Analysis%2FCharacteristic_Reactions_of_Select_Metal_Ions%2FCharacteristic_Reactions_of_Nickel_Ions_(Ni%25C2%25B2%25E2%2581%25BA), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Characteristic Reactions of Mercury Ions (Hg and Hg), Characteristic Reactions of Silver Ions (Ag).